解析学2 課題(4月28日)

問題1 数列 $\{a_n\}$ を

$$a_1 = 1,$$
 $a_2 = \frac{2}{3},$ $a_{n+2} = \frac{6a_{n+1} - a_n}{9}$ $(n = 1, 2, 3, \dots)$

により定義するとき、一般項 a_n を求めよ.

(解) 漸化式より、すべての $n \in \mathbb{N}$ に対して

$$3 a_{n+1} - a_n = \frac{3 a_n - a_{n-1}}{3} = \frac{3 a_{n-1} - a_{n-2}}{3^2} = \dots = \frac{3 a_2 - a_1}{3^{n-1}} = \frac{1}{3^{n-1}}$$

が成り立つ. 両辺に 3^{n-1} を掛け, $b_n = 3^{n-1}a_n$ とおくと, $b_1 = a_1 = 1$,

$$b_{n+1} - b_n = 3^{n-1} (3 a_{n+1} - a_n) = 3^{n-1} \cdot \frac{1}{3^{n-1}} = 1, \quad n \in \mathbb{N}$$

より $b_n=1+(n-1)\cdot 1=n$ であるから、一般項 a_n は $a_n=n\cdot 3^{1-n}$ となる. \blacksquare

問題2 すべての $n \in \mathbb{N}$ に対して $2^{n-1} \ge n$ が成り立つことを示せ.

(解) n=1 のときには $2^{1-1}=1$ より示すべき不等式が成り立つ. $n \ge 2$ のときには、二項定理より

$$2^{n-1} = (1+1)^{n-1} = \sum_{k=0}^{n-1} {n-1 \choose k} \ge \sum_{k=0}^{n-1} {n-1 \choose k} = {n-1 \choose 0} + {n-1 \choose 1} = 1 + (n-1) = n$$

である. ■

問題3 数列 $\{a_n\}$ は問題1 で与えられるものとし, $\varepsilon>0$ を任意に取る.すべての自然数 $n\geq n_0$ に対して $|a_n|<\varepsilon$ をみたす自然数 n_0 が存在するか否か調べよ. n_0 が存在する場合には, n_0 の例を示せ.

(解)問題1と問題2より

$$|a_n| = a_n = \frac{n}{3^{n-1}} \le \frac{2^{n-1}}{3^{n-1}} = \left(\frac{2}{3}\right)^{n-1}$$

が得られる.

$$\left(\frac{2}{3}\right)^{n-1} < \varepsilon, \qquad \text{if } 0, \quad n > \frac{\log \varepsilon}{\log(2/3)} + 1$$

をみたす自然数 n を n_0 とおく. すべての自然数 $n > n_0$ に対して

$$|a_n| = a_n \le \left(\frac{2}{3}\right)^{n-1} \le \left(\frac{2}{3}\right)^{n_0 - 1} < \varepsilon$$

となる. ■