解析学2 課題(5月12日)

問題 1 a > 1 とし、数列 $\{x_n\}$ を

$$x_1 = a,$$
 $x_{n+1} = \frac{x_n^2 + a}{2x_n}$ $(n \in \mathbb{N})$

により定義するとき,次の問に答えよ.

- (1) $\{x_n\}$ は下に有界であるか否か調べよ.
- (2) $\{x_n\}$ は単調減少であるか否か調べよ.
- (3) $\lim_{n\to\infty} x_n$ が存在するか否か調べよ.
- (解) 数学的帰納法により、すべての $n \in \mathbb{N}$ に対して $x_n > 0$ であることが示せる.
- (1): $x_1 = a > \sqrt{a}$ である. 相加平均・相乗平均により

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \ge \sqrt{x_n \cdot \frac{a}{x_n}} = \sqrt{a}, \quad n \in \mathbb{N}$$

が得られる. したがって、すべての $n\in\mathbb{N}$ に対して $x_n\geq \sqrt{a}$ であるから、 $\{x_n\}$ は下に有界である.

(2): 問 (1) より $x_n^2 \ge a$ $(n \in \mathbb{N})$ であるから,

$$x_{n+1} - x_n = \frac{x_n^2 + a}{2x_n} - x_n = \frac{a - x_n^2}{2x_n} \le 0, \quad n \in \mathbb{N}$$

となる. したがって、 $\{x_n\}$ は単調減少数列である.

(3): 問 (1), (2) より、 $\{x_n\}$ は下に有界な単調減少数列であるから、極限 $\lim_{n\to\infty}x_n=x$ が存在する. このとき、 $x>\sqrt{a}$,

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{x_n^2 + a}{2x_n} = \frac{x^2 + a}{2x}$$

であるから, $x=\sqrt{a}$ が得られる. したがって, $\lim_{n\to\infty}x_n=\sqrt{a}$ となる. \blacksquare