解析学3 課題 解答例

2020.11.24

- 1 次の問いに答えよ.
 - (1) 孤度 (ラジアン) の定義を示せ.
 - $(2) \sin x$ (x の単位はラジアン) の (幾何学的な) 定義を示せ.
- (解) (1) 半径 r>0 の円において、中心角 θ に対応する円弧の長さを x としたとき、比 x/r は r の値に関わらず一定であり、この性質を利用して角度の大きさ(弧度、単位:ラジアン) θ を $\theta=x/r$ により定める。ただし、反時計回りに測ったときの θ は正であり、時計回りに測ったときの θ は負である。したがって、弧度は単位円における円弧の長さ x である。
- (2) 単位円 $x^2+y^2=1$ を考え、点 (1,0) を起点としたときの円弧の長さを θ とする.角度 θ ラジアンに対応する点は $(\cos\theta,\sin\theta)$ と表される. y=0 から $y=z\in[0,1]$ までの曲線 $x=\sqrt{1-y^2}$ 長さは

$$F(z) = \int_0^z \sqrt{1 + \left\{ \frac{d}{dy} \left[\sqrt{1 - y^2} \right] \right\}^2} \, dy = \int_0^z \frac{1}{\sqrt{1 - y^2}} \, dy$$

となるので、 $0 \le \theta \le \pi/2$ (第 1 象限の角) の場合には

$$\theta = F(\sin \theta)$$

をみたす. $0 \le \theta \le \pi/2$ における $\theta = F(z)$ の逆関数を $z = \phi(\theta)$ とすると, $0 \le \theta \le 2\theta$ に対して $\sin \theta$ を

$$\sin \theta = \begin{cases} \phi(\theta) & (0 \le \theta \le \pi/2) \\ \phi(\pi - \theta) & (\pi/2 \le \theta \le \pi) \\ -\phi(\theta - \pi) & (\pi \le \theta \le 2\theta) \end{cases}$$

により定義する。また、一般の $\theta \in \mathbb{R}$ に対しては、 θ を $\theta = 2\pi n + \psi$ $(n \in \mathbb{Z}, \psi \in [0, 2\pi))$ と表し、 $\sin \theta = \sin \psi$ により定義する。 \blacksquare