$lacksymbol{\bullet}$ n=2 のとき、 $\|\mathbf{x}\|_1=1$ 、 $\|\mathbf{x}\|_2=1$ 、 $\|\mathbf{x}\|_3=1$ 、 $\|\mathbf{x}\|_\infty=1$ を図示せよ.

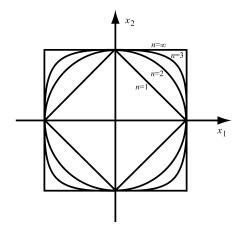
(解答例) n=2 のときには、それぞれ

$$|x_1| + |x_2| = 1$$
, $|x_1|^2 + |x_2|^2 = 1$, $|x_1|^3 + |x_2|^3 = 1$, $\max(|x_1|, |x_2|) = 1$ (P)

となる. (x_1, x_2) が (P) をみたせば $(-x_1, x_2)$, $(x_1, -x_2)$, $(-x_1, -x_2)$ も (P) をみたすので,第 1 象限で (P) をみたす曲線,つまり,

$$x_1 + x_2 = 1,$$
 $x_1^2 + x_2^2 = 1,$ $x_1^3 + x_2^3 = 1,$ $\max(x_1, x_2) = 1$

を用いて、 x_1 軸と x_2 軸に対称に移すことにより、(P) をみたす曲線を求めることができる.



●任意の $\mathbf{x} = (x_1, \dots, x_n)$ に対して

$$\|\mathbf{x}\|_1 = \sum_{k=1}^n |x_k|, \qquad \|\mathbf{x}\|_{\infty} = \max_{1 \le k \le n} |x_k|$$

とするとき, $\|\mathbf{x}\|_1$ および $\|\mathbf{x}\|_{\infty}$ はノルムであることを示せ.

(解答例) (i) 明らかに $\|\mathbf{x}\|_1 \ge 0$, $\|\mathbf{x}\|_\infty \ge 0$ である。また, $\mathbf{x} = \mathbf{0}$ のときには,定義より $\|\mathbf{x}\|_1 = 0$, $\|\mathbf{x}\|_\infty = \mathbf{0}$ が成り立つ。逆に, $\|\mathbf{x}\|_1 = \mathbf{0}$ または $\|\mathbf{x}\|_\infty = \mathbf{0}$ のとき,すべての $1 \le k \le n$ に対して $|x_k| = \mathbf{0}$, つまり, $x_k = \mathbf{0}$ であるから, $\mathbf{x} = \mathbf{0}$ である。 (ii) 任意の $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$ に対して

$$\| \alpha \mathbf{x} \|_{1} = \sum_{k=1}^{n} |\alpha x_{k}| = \sum_{k=1}^{n} |\alpha| |x_{k}| = |\alpha| \sum_{k=1}^{n} |x_{k}| = |\alpha| \|\mathbf{x}\|_{1},$$

$$\| \alpha \mathbf{x} \|_{\infty} = \max_{1 \le k \le n} |\alpha x_{k}| = \max_{1 \le k \le n} |\alpha| |x_{k}| = |\alpha| \max_{1 \le k \le n} |x_{k}| = |\alpha| \|\mathbf{x}\|_{\infty}$$

である. (iii) 任意の $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$, $\mathbf{y} = (y_1, \cdots, y_n) \in \mathbb{R}^n$ に対して、すべての $1 \le k \le n$ に対して $|x_k + y_k| \le |x_k| + |y_k|$, $|x_k| \le |\mathbf{x}|_{\infty}$, $|y_k| \le |\mathbf{y}|_{\infty}$ であるから、

$$\|\,\mathbf{x}+\mathbf{y}\,\|_1 = \sum_{k=1}^n |\,x_k + y_k\,| \le \sum_{k=1}^n (|\,x_k\,| + |\,y_k\,|) = \sum_{k=1}^n |\,x_k\,| + \sum_{k=1}^n |\,y_k\,| = \|\,\mathbf{x}\,\|_1 + \|\,\mathbf{y}\,\|_1,$$

$$\|\,\mathbf{x}+\mathbf{y}\,\|_\infty = \max_{1\le k\le n} |\,x_k + y_k\,| \le \max_{1\le k\le n} (|\,x_k\,| + |\,y_k\,|) \le \max_{1\le k\le n} (\|\,\mathbf{x}\,\|_\infty + \|\,\mathbf{y}\,\|_\infty) = \|\,\mathbf{x}\,\|_\infty + \|\,\mathbf{y}\,\|_\infty$$
 である. したがって、 $\|\,\mathbf{x}\,\|_1$ および $\|\,\mathbf{x}\,\|_\infty$ はノルムである.