解析学概論 解答例

2011.07.11

問題 有理数 p に対して \mathbb{Q}_p を $\mathbb{Q}_p = \{ r \in \mathbb{Q} \mid r > p \}$ で定義するとき , 正の有理数 p , q に対して

$$\mathbb{Q}_{pq} = \{ r_1 r_2 \mid r_1 \in \mathbb{Q}_p, r_2 \in \mathbb{Q}_q \}$$

が成り立つことを示せ.

(解) $A=\{\,r_1\,r_2\mid r_1\in\mathbb{Q}_p,r_2\in\mathbb{Q}_q\,\}$ とおく .

 $A\subset\mathbb{Q}_{p\,q}$ について: 任意に $r\in A$ をとる.A の定義より,ある $r_1\in\mathbb{Q}_p$, $r_2\in\mathbb{Q}_q$ が取れて, $r=r_1\,r_2$ と表される. $r_1>p$, $r_2>q$ より $r=r_1\,r_2>p\,r_2>p\,q$ となり, $r\in\mathbb{Q}_{p\,q}$ である.したがって, $A\subset\mathbb{Q}_{p\,q}$ が得られる.

 $\mathbb{Q}_{p\,q}\subset A$ について: 任意に $r\in\mathbb{Q}_{p\,q}$ をとり,

$$\alpha = \frac{r - p \, q}{p + q}, \qquad r_1 = p + \alpha, \qquad r_2 = \frac{r}{r_1}$$

とおく . $r\in\mathbb{Q}$, r>pq より $0<\alpha\in\mathbb{Q}$, $p< r_1\in\mathbb{Q}$ となり , $r_2\in\mathbb{Q}$ が得られる . また ,

$$r_2 - q = \frac{r - (p + \alpha) \ q}{r_1} = \frac{p \ q + (p + q) \ \alpha - (p + \alpha) \ q}{r_1} = \frac{p \ \alpha}{r_1} > 0$$

であるから, $r=r_1\,r_2\in A$ が成り立つ.したがって, $\mathbb{Q}_{p\,q}\subset A$ である.

以上から, $\mathbb{Q}_{p,q}=\{\,r_1\,r_2\mid r_1\in\mathbb{Q}_p,r_2\in\mathbb{Q}_q\,\}$ が成り立つ. lacktriangle