解析学 II 解答例

2013.06.17

- 2×2 実行列 A の固有値を λ_1 , λ_2 $(\lambda_1 \neq \lambda_2)$ とする。対応する A の固有ベクトルをそれぞれ \mathbf{x}_1 , \mathbf{x}_2 とし, $P = (\mathbf{x}_1, \mathbf{x}_2)$ とおく.
 - (1) $\det P \neq 0$ であることを示せ.
 - (2) $P^{-1}AP$ を求めよ.
- **(解)** (1) \mathbf{x}_1 と \mathbf{x}_2 は一次独立であり、非自明なベクトルであることに注意したい。 $\det P=0$ であると仮定すると、ある複素数 $p\neq 0$ が存在して $\mathbf{x}_1=p\,\mathbf{x}_2$ が成り立つので、 \mathbf{x}_1 と \mathbf{x}_2 は一次従属である。したがって、 $\det P\neq 0$ でなければならない。 (2)

$$\begin{split} P^{-1} \, A \, P = & P^{-1} \, A \left(\mathbf{x}_1, \mathbf{x}_2 \right) = P^{-1} \left(A \, \mathbf{x}_1, A \, \mathbf{x}_2 \right) = P^{-1} \left(\lambda_1 \, \mathbf{x}_1, \lambda_2 \, \mathbf{x}_2 \right) \\ = & P^{-1} \left(\mathbf{x}_1, \mathbf{x}_2 \right) \, \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = P^{-1} \, P \, \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \end{split}$$

である. ■