解析学概論 解答例

2012.05.27

■ 関数 $f_n(x)$, $g_n(x)$ を

$$f_n(x) = \cos n x,$$
 $g_n(x) = \frac{\sin(n+1) x}{\sin x},$ $n \in \mathbb{N}$

により定義する。このとき、すべての $n\in\mathbb{N}$ に対して、 $f_n(x)$ および $g_n(x)$ は n 次多項式 $P_n(X)$ 、 $Q_n(X)$ を用いて

$$f_n(x) = P_n(\cos x), \qquad g_n(x) = Q_n(\cos x)$$
 (E)

と表されることを示せ.

(解) $X = \cos x$ とする. (1) 加法定理より

$$f_1(x) = \cos x = X$$
, $f_2(x) = 2\cos^2 x - 1 = 2X^2 - 1$

と表される. したがって、n=1 および n=2 に対して $f_n(x)$ は (E) のように表現できる. (2) $n=\ell$ および $n=\ell+1$ に対して $f_n(x)$ は (E) のように表現できる、つまり、ある ℓ 次多項式 $P_\ell(X)$ と $(\ell+1)$ 次多項式 $P_{\ell+1}(X)$ を用いて

$$f_{\ell}(x) = P_{\ell}(\cos x), \qquad f_{\ell+1}(x) = P_{\ell+1}(\cos x)$$

と表されると仮定する. 加法定理より

$$\cos(\ell+2) x + \cos \ell x = 2 \cos x \cos(\ell+1) x$$

であるから,

$$f_{\ell+2}(x) = 2\cos x \, f_{\ell+1}(x) - f_{\ell}(x) = 2X \, P_{\ell+1}(X) - P_{\ell}(X)$$

となり、 $f_{\ell+2}(x)$ は X に関する $(\ell+2)$ 次多項式で表すことができる。 したがって、 $n=\ell+1$ および $n=\ell+2$ に対して $f_n(x)$ は (E) のように表現できる。 数学的帰納法により、 すべての $n\in\mathbb{N}$ に対して $f_n(x)$ は (E) のように表現できる。

また,加法定理より

$$g_1(x) = \frac{2\sin x \cos x}{\sin x} = 2\cos x = 2X,$$

$$g_{n+1}(x) = \frac{\sin(n+1)x \cos x + \cos(n+1)x \sin x}{\sin x} = g_n(x)\cos x + f_{n+1}(x)$$

が得られるので、 $f_n(x)$ と同様に数学的帰納法を用いて、すべての $n\in\mathbb{N}$ に対して $g_n(x)$ は (E) のように表現できることが示せる。 \blacksquare