解析学概論 解答例

2012.06.10

■ 各 $n \in \mathbb{N}_0$ に対して、 $\Psi_n : \mathbb{N}_0 \to \mathbb{N}_0$ を帰納的に

(i)
$$\Psi_n(0) = 0$$
, (ii) $\Psi_n(S(m)) = \Psi_n(m) + n$ $(m \in \mathbb{N}_0)$

により定義する. このとき, すべての n, m, $k \in \mathbb{N}_0$ に対して

$$\Psi_{\Psi_n(m)}(k) = \Psi_n(\Psi_m(k)) \tag{E}$$

が成り立つことを示せ、ここで、分配法則、つまり、すべての n、m、 $k \in \mathbb{N}_0$ に対して $\Phi_n(m) + \Psi_n(k) = \Psi_n(m+k)$ が成り立つことを用いてもよい。

(解) $n, m \in \mathbb{N}_0$ を任意にとり固定し、k に関する数学的帰納法で証明する. (1) k=0 のとき、

(左辺) =
$$\Psi_{\Psi_n(m)}(0) \stackrel{\text{(i)}}{=} 0$$
, (右辺) = $\Psi_n(\Psi_m(0)) \stackrel{\text{(i)}}{=} \Psi_n(0) \stackrel{\text{(i)}}{=} 0$

より (E) が成り立つ. (2) $k = \ell$ のとき (E) が成り立つと仮定する.

$$\begin{split} \Psi_{\Psi_n(m)}(S(\ell)) \stackrel{\text{(ii)}}{=} & \Psi_{\Psi_n(m)}(\ell) + \Psi_n(m) \stackrel{\text{\ensuremath{\notolive}}}{=} \Psi_n(\Psi_m(\ell)) + \Psi_n(m) \\ \stackrel{\text{\ensuremath{\notolive}}}{=} & \Psi_n(\Psi_m(\ell) + m) \stackrel{\text{(ii)}}{=} \Psi_n(\Psi_m(S(\ell))) \end{split}$$

より、 $k=S(\ell)$ のときも (E) が成り立つ。数学的帰納法より、すべての n、m、 $k\in\mathbb{N}_0$ に対して (E) が成り立つ。 \blacksquare