解析学概論 解答例

2012.06.17

■ $n, m \in \mathbb{N}_0$ に対して、二項関係 \leq および < を

$$\begin{array}{lll} n \leq m & \iff & \exists k \in \mathbb{N}_0 \ (\Phi_k(n) = m) \\ n < m & \iff & n \leq m \ \land \ n \neq m \end{array}$$

により定義する。このとき、すべての $n,\ m\in\mathbb{N}_0$ に対して、n< S(m) ならば $n\leq m$ が成り立つことを示せ、

(解) 定義より、 $n \leq S(m)$ かつ $n \neq S(m)$ が成り立つ。 $n \leq S(m)$ より、ある $k \in \mathbb{N}_0$ が取れて、 $\Phi_k(n) = S(m)$ となる。k = 0 なら $S(m) = \Phi_0(n) = n$ となり、 $S(m) \neq n$ に反するので、 $k \neq 0$ でなければならない。 $\mathbb{N}_0 = \{0\} \cup S(\mathbb{N}_0)$ より、 $k \in S(\mathbb{N}_0)$ となり、ある $\ell \in \mathbb{N}_0$ が取れて、 $S(\ell) = k$ が成り立つ。S が単射であることと

$$S(m) = \Phi_{S(\ell)}(n) \overset{\not \sim b}{=} \Phi_n(S(\ell)) \overset{\text{mix-opt}}{=} S(\Phi_n(\ell)) \overset{\not \sim b}{=} S(\Phi_\ell(n))$$

より、 $m = \Phi_{\ell}(n)$ が得られる. したがって、 $n \le m$ である.