解析学 I 解答例

2015.10.13

■ 次の問いに答えよ.

- (1) 自然数 n に対して、n と n+1 は互いに素であることを示せ.
- (2) 自然数 a, b ($2 \le a < b$) に対して、次は同値であることを示せ.
 - (a) gcd(a, b) = 1 $region{1}{c}$ $region{1}{c}$
 - (b) ある整数 x, y が存在して ax + by = 1 が成り立つ.
- (解) (1) 関係式 $(n+1)\cdot 1 + n\cdot (-1) = 1$ と (2) より、n と n+1 は互いに素である.
- (2) (a) \Longrightarrow (b): 自然数 k に対して,kb を a で割ったときの商を q_k $(q_k \in \mathbb{N})$,余りを r_k $(0 \le r_k < a)$ とすると, $kb = q_k \, a + r_k$ と表せる. ある自然数 k (k < a) に対して $r_k = 0$ であると仮定すると, $kb = q_k \, a$ より k は a の倍数となり, $1 \le k < a$ に矛盾する. したがって, $r_k \ge 1$ $(1 \le k < a)$ である. ある自然数 k, ℓ $(k < \ell < a)$ に対して $r_k = r_\ell$ と仮定すると,

$$0 = r_{\ell} - r_{k} = (\ell b - q_{\ell} a) - (k b - q_{k} a) = (\ell - k) b - (q_{\ell} - q_{k}) a$$

より、 $\ell-k$ は a の倍数となり、 $1 \leq \ell-k < a$ に矛盾する.したがって、 r_1 、 r_2 、…, r_{a-1} はすべて異なる. $1 \leq r_k < a$ ($1 \leq k < a$)より、ある自然数 m (m < a)に対して $r_m = 1$ がみたされなければならない.したがって、 $a \cdot (-q_m) + b \cdot m = 1$ が得られる.

(b) \Longrightarrow (a): $c = \gcd(a, b) \ge 1$ とおくと, $a = c\hat{a}$, $b = c\hat{b}$ をみたす自然数 \hat{a} , \hat{b} が取れる.

$$1 = ax + by = c(\hat{a}x + \hat{b}y), \qquad \hat{a}x + \hat{b}y \in \mathbb{Z}$$

より 1 は c で整除されなければならないので, c=1 である.