解析学概論 解答例

2015.04.20

■ \mathbb{R}^2 の部分集合 A_2 , B_2 , A_3 , B_3 を

$$A_2 = \{ (x,y) | x^2 + y^2 \le 1 \}, \qquad B_2 = \{ (x,y) | |x|^2 + |y|^2 \le 1 \},$$

$$A_3 = \{ (x,y) | x^3 + y^3 \le 1 \}, \qquad B_3 = \{ (x,y) | |x|^3 + |y|^3 \le 1 \}$$

により定めるとき、それらの包含関係を調べよ.

(解) (1) すべての (x,y) に対して $x^2+y^2=|x|^2+|y|^2$ であるから, $A_2=B_2$ である.(2) $(x,y)\in B_2$ を任意にとる.

$$|x|^2 \le |x|^2 + |y|^2 \le 1$$
, $|y|^2 \le |x|^2 + |y|^2 \le 1$

より $|x| \le 1$, $|y| \le 1$ であるから,

$$|x|^3 + |y|^3 \le |x| \cdot |x|^2 + |y| \cdot |y|^2 \le |x|^2 + |y|^2 \le 1$$

となり、 $(x,y) \in B_3$ である。したがって、 $B_2 \subset B_3$ が成り立つ。(3) すべての $x \in \mathbb{R}$ に対して $-|x| \le x \le |x|$ であることに注意したい。任意の $(x,y) \in B_3$ に対して、

$$|x^3 + y^3 = x \cdot |x|^2 + y \cdot |y|^2 \le |x| \cdot |x|^2 + |y| \cdot |y|^2 = |x|^3 + |y|^3 \le 1$$

となり、 $(x,y) \in A_3$ である。 したがって、 $B_3 \subset A_3$ が成り立つ。以上から、 $A_2 = B_2 \subset B_3 \subset A_3$ である。 \blacksquare