解析学概論 解答例

2016.06.13

 $X=\mathbb{N}_0 imes\mathbb{N}_0$ とし,X 上の二項関係 $\stackrel{R}{\sim}$ を

$$(n_1, m_1) \stackrel{R}{\sim} (n_2, m_2) \qquad \Longleftrightarrow \qquad n_1 + m_2 = n_2 + m_1$$

により定義するとき , 二項関係 $\stackrel{R}{\sim}$ は X 上の同値関係であることを示せ.ここで , 演算 + は自然数の集合 \mathbb{N}_0 における加法である.

(解) $(1)\overset{R}{\sim}$ の定義と n+m=n+m より $(n,m)\overset{R}{\sim}(n,m)$ が成り立つ.(2) $(n_1,m_1)\overset{R}{\sim}(n_2,m_2)$ であると仮定する.定義より $n_1+m_2=n_2+m_1$ であるから,左辺と右辺を入れ替えることにより $n_2+m_1=n_1+m_2$ となる.定義より $(n_2,m_2)\overset{R}{\sim}(n_1,m_1)$ が成り立つ.(3) $(n_1,m_1)\overset{R}{\sim}(n_2,m_2)$ かつ $(n_2,m_2)\overset{R}{\sim}(n_3,m_3)$ であると仮定する.定義より $n_1+m_2=n_2+m_1$ かつ $n_2+m_3=n_3+m_2$ であるから,

$$\begin{split} (n_1+m_3) + m_2 & \stackrel{\text{結合} \, : \, \dot{\nabla} \, / \! / \, \dot{D}}{=} \, (n_1+m_2) + m_3 \, \stackrel{\text{仮定}}{=} \, (n_2+m_1) + m_3 \\ & \stackrel{\text{結合} \, : \, \dot{\nabla} \, / \! / \, \dot{D}}{=} \, (n_2+m_3) + m_1 \, \stackrel{\text{仮定}}{=} \, (n_3+m_2) + m_1 \, \stackrel{\text{结合} \, : \, \dot{\nabla} \, / \! / \, \dot{D}}{=} \, (n_3+m_1) + m_2 \end{split}$$

が成り立ち,簡約法則より $n_1+m_3=n_3+m_1$ が得られる.定義より $(n_1,m_1)\stackrel{R}{\sim}(n_3,m_3)$ である.以上から,二項関係 $\stackrel{R}{\sim}$ は X 上の同値関係である. \blacksquare