解析学概論 解答例

2016.07.11

■ 次の間に答えよ.

- (1) n を自然数とする. n^2 が 2 で整除できるならば, n も 2 で整除できることを示せ.
- (2) $\sqrt{2}$ は有理数でないことを示せ.
- **(解)** (1) n が 2 で整除できないと仮定する. ある自然数 m を用いて n=2m-1 と表せるので、 $2m^2-2m\in\mathbb{Z}$ より $n^2=2(2m^2-2m)+1$ は 2 で整除できない. 対偶を取ることにより、 n^2 が 2 で整除できるらば、n も 2 で整除できる.
- (2) $\sqrt{2}$ が有理数であると仮定する。このとき,互いに素な(最大公約数が 1 である)自然数 n, m を用いて $\sqrt{2}=n/m$ と表せる。 $n^2=2m^2$ より n^2 は 2 で整除される。前問題から,ある自然数 ℓ が取れて $n=2\ell$ と表せるので, $m^2=2\ell^2$ となる。同様に,ある自然数 ℓ が取れて m=2k と表される。以上から, ℓ は ℓ の公約数であり, ℓ と ℓ が互いに素であることに反する。背理法により, ℓ は有理数ではない。