■ $X = \mathbb{Z} \times \mathbb{N}$ における二項関係 \approx を

$$(q_1, p_1) \approx (q_2, p_2) \iff q_1 \cdot p_2 = q_2 \cdot p_1$$

により定義するとき、二項関係 \approx は X における同値関係であること示せ、ただし、 $\mathbb{N}=S(\mathbb{N}_0)$ である、また、 \mathbb{N} は \mathbb{Z} の部分集合とみなし、演算・は \mathbb{Z} における乗法である。

(解) (i) $q \cdot p = q \cdot p$ と定義より $(q,p) \approx (q,p)$ が成り立つ。(ii) $(q_1,p_1) \approx (q_2,p_2)$ とすると,定義より $q_1 \cdot p_2 = q_2 \cdot p_1$ が成り立ち,左辺と右辺を入れ替えると, $q_2 \cdot p_1 = q_1 \cdot p_2$ が得られる.定義より $(q_2,p_2) \approx (q_1,p_1)$ となる。(iii) $(q_1,p_1) \approx (q_2,p_2)$ かつ $(q_2,p_2) \approx (q_3,p_3)$ とすると,定義より $q_1 \cdot p_2 = q_2 \cdot p_1$ かつ $q_2 \cdot p_3 = q_3 \cdot p_2$ が成り立つ.

$$(q_1 \cdot p_3) \cdot p_2 = (q_1 \cdot p_2) \cdot p_3 = (q_2 \cdot p_1) \cdot p_3 = (q_2 \cdot p_3) \cdot p_1 = (q_3 \cdot p_2) \cdot p_1 = (q_3 \cdot p_1) \cdot p_2$$

と簡約法則 *1 により $q_1 \cdot p_3 = q_3 \cdot p_1$ が得られ、定義より $(q_1, p_1) \approx (q_3, p_3)$ が成り立つ.

$$(q+s)\cdot p = q\cdot p + s\cdot p = r\cdot p + s\cdot p = (q+s)\cdot p = 0\cdot p = 0$$

が成り立つ. $\mathbb Z$ は整域であり, $p \neq 0$ であるから, q+s=0 である. 両辺に r を加えると

$$r = 0 + r = q + (s + r) = q + 0 = q$$

が成り立つ. ■

^{*1 (}整数の簡約法則 $(p \neq 0 \land (q \cdot p = r \cdot p)) \Longrightarrow q = r$ の証明) r の加法の逆元を s とする. $s \cdot p$ を両辺に加えて,分配法則を $H \cup S \nearrow$