解析学概論 解答例

2018.11.19

- 次の問いに答えよ.
 - (1) 複素数の範囲で方程式 $\overline{z}=rac{2\,z+3}{z}$ の解をすべて求めよ.
 - (2) 複素数の範囲で $\sin z$, $\cos z$ は $\sin z = \frac{e^{iz} e^{-iz}}{2i}$, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ により定義される. このとき、複素数の範囲で方程式 $\sin z = 0$ の解をすべて求めよ.
- (解) $(1) z = (|z|^2 3)/2 \in \mathbb{R}$ より、与えられた方程式の解はすべて実数であるから、

$$z = \overline{z} = \frac{2z+3}{z}$$
, $0 = z^2 - 2z - 3 = (z-3)(x+1)$

より求める解は z=-1 および z=3 である. (2) 実数 z に対して $\sin z$ および $\cos z$ は実数であり、実数 $a,\ b$ に対して

$$\sin(a+bi) = \frac{e^{ai-b} - e^{-ai+b}}{2i} = \frac{\left(e^{ai} - e^{-ai}\right) \left(e^b + e^{-b}\right) - \left(e^{ai} + e^{-ai}\right) \left(e^b - e^{-b}\right)}{4i}$$
$$= \frac{e^b + e^{-b}}{2} \sin a + i \frac{e^b - e^{-b}}{2} \cos a$$

であることに注意したい. (a) $b \neq 0$ の場合, $e^b \neq e^{-b}$ より

$$|\sin(a+b\,i)|^2 = \left(\frac{e^b + e^{-b}}{2}\right)^2 \, \sin^2 a + \left(\frac{e^b - e^{-b}}{2}\right)^2 \, \cos^2 a = \sin^2 a + \left(\frac{e^b - e^{-b}}{2}\right)^2 > 0$$

となるので、方程式 $\sin(a+bi)=0$ をみたす実数の組 (a,b) は存在しない。(b) b=0 の場合、方程式 $\sin a=0$ の解は $a=n\pi$ $(n\in\mathbb{Z})$ である。したがって、複素数の範囲で方程式 $\sin z=0$ の解は $z=n\pi$ $(n\in\mathbb{Z})$ である。 \blacksquare