解析学2 解答例

2018.06.04

■ \mathbb{R} の空でない部分集合 A が下に有界であるとき、A の下限 $\inf A$ が存在することを示せ、

(解) $\hat{A}=L(A)$, $\hat{B}=\mathbb{R}\setminus L(A)$ とおく、A が下に有界であるから, $\hat{A}=L(A)\neq\varnothing$ である。また, $x\in A$ に対して x< x+1 より $x+1\notin L(A)$, つまり, $x+1\in \hat{B}$ である。したがって, $\hat{B}\neq\varnothing$ が得られ,対 (\hat{A},\hat{B}) は \mathbb{R} の切断の条件 (D1) をみたす。任意の $a\in \hat{A}$, $b\leq a$ に対して,すべての $x\in A$ に対し $b\leq a\leq x$ が成り立つので, $b\in \hat{A}$ である。対偶を取ることにより,

$$\begin{split} a \in \hat{A} \wedge b \in \hat{B} &\iff a \in \hat{A} \wedge b \not\in \hat{A} \\ &\implies a \in \hat{A} \wedge (a \not\in \hat{A} \vee b > a) \\ &\iff (a \in \hat{A} \wedge a \not\in \hat{A}) \vee (a \in \hat{A} \wedge b > a) \\ &\iff a \in \hat{A} \wedge b > a \implies b > a \end{split}$$

となるので、対 (\hat{A},\hat{B}) は \mathbb{R} の切断の条件(D2)をみたす。以上から、 (\hat{A},\hat{B}) は \mathbb{R} の切断である。

実数の連続性より $\max \hat{A}$ または $\min \hat{B}$ のいずれか一方が存在する. $b = \min \hat{B}$ が存在すると仮定する. b は A の下界ではないので、a < b をみたす $a \in A$ が存在し、

$$a < c = \frac{a+b}{2} < b$$

より c は A の下界ではない,つまり, $c \in \hat{B}$ である.これは b の最小性に矛盾である.したがって, $\min \hat{B}$ は存在しないので, $\max \hat{A}$ が存在し, $\inf A = \max \hat{A}$ である. \blacksquare